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REACT HOOKS

Anyone NOT knowing what React Hooks are?

Hooks 2 Minute intro
• add State, Lifecycle, Sideffects in functional components

(almost no need for class components anylonger)

• "Hooks into your components lifecycle"

• Regular JavaScript functions... 
• ...but must start with 'use'
• ...but must not be used in conditionals, for/loops, Class 

components
• ...but behaviour is tied to React



REACT HOOKS

Hooks example

import React, { useState } from "react";

export default function SettingsForm(props) {

const [favColor, setFavColor] = useState("blue");

return <•••>
<input value={favColor} 

onChange={e => setFavColor(e.target.value) } />
<•••>

}

• useState returns value and setter-function
• When state changes, component re-renders

• component function will run again



One Year

React Hooks



REACT HOOKS

One Year of Hooks...

There are some built-in Hooks, like

• useState

• useReducer handle state in a Redux-like way but only for one component

• useEffect for sideeffects (replaces lifecycle methods in classes)

• useContext to receive a Context object

• useCallback/useMemo/useRef: solve problems that arise due to using... Hooks



REACT HOOKS

One Year of Hooks...

Libraries ship with Hooks, like

• Redux (useSelector, useDispatch, useStore)

• Router (useHistory, useParams, useLocation)

• Apollo Client (useQuery, useMutation)

• React Intl (useIntl)

• React i18n (useTranslation)



REACT HOOKS

One Year of Hooks...

Libraries ship with Hooks, like

• Redux (useSelector, useDispatch, useStore)

• Router (useHistory, useParams, useLocation)

• Apollo Client (useQuery, useMutation)

• React Intl (useIntl)

• React i18n (useTranslation)

Community has them too,

• https://usehooks.com

• https://nikgraf.github.io/react-hooks/

• https://www.hooks.guide/
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One Year of Hooks...

...it seems, Hooks are the newway to go for React Apps
(Vue has them now, too btw)
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Who likes Hooks?
(My assumption: almost everyone)

Who dislikes Hooks?
(My assumption: almost noone)



GOOD OR EVIL?

Let's hear some more...



h"ps://twi"er.com/philippspiess/status/1056981916489015296



"With Hooks, 

React loses its innocence

and becomes Angular"
Attendee of one of my workshops

😱



h"ps://twi"er.com/dan_abramov/status/1056808552180793344



"Unsure..."
Me😵



h"ps://twi"er.com/tomdale/status/1170095532066430977

SO... HOW ABOUT THIS?
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A LOOK AT THE API

useContext to access React Context in your functional component

export default function SettingsForm(props) {
const contextValue = React.useContext(ThemeContext);

return <p>Your context color: {contextValue.color}</p>
}

• Noteable: This is probably easy to understand:
I want to use context "ThemeContext" here in my component

• But: if context changes, SettingsForm will automatically be re-executed! 
Why? Because it's a ... Hook ("weird magical meta-language")
"Something" happens in the background to make that work
There is no indicator that this will happen. Syntactically "only" JavaScript
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A LOOK AT THE API

useState for local State in your functional component

export default function SettingsForm(props) {
const [ favColor, setFavColor ] = React.useState("red");

return <input value={favColor} 
onChange={e => setFavColor(e.target.value) />

}
• Noteable: Return Value

• what is this? Tuple! (btw: I think Tuples will make it to JavaScript)

• unsual (yet), but elegant, allows to name my variables as I want them to

• Noteable: initial value, used only once even if this method is run on each render
Why? Because it's a ... Hook ("weird magical meta-language")

• Noteable: setter-Function leads to re-render
Why? Because it's a ... Hook ("weird magical meta-language")



A LOOK AT THE API

A timer...

export default function App() {
const [running, setRunning] = useState(false);

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);

setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}



A LOOK AT THE API

useRef: for fixing problems introduced by Hooks
• We want to cancel the running timeout
• Somehow need to get access to the cleanup function or the id
export default function App() {

const [running, setRunning] = useState(false);

function cancel() { 🤔 }

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);

setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}



A LOOK AT THE API

useRef: Remember Class Components?

h"ps://twi"er.com/dan_abramov/status/1125223181701263360

JavaScript Standard

"weird magical meta-language"



A LOOK AT THE API

useRef: for fixing problems introduced by Hooks
• We want to cancel the running timeout
• Somehow need to get access to the cleanup function or the id
export default function App() {

const [running, setRunning] = useState(false);
const timerRef = useRef();
function cancel() { clearTimeout(timerRef.current); }

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);
timerRef.current = id;
setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}
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USING HOOKS

Using Hooks: this is simple...

import React, { useState } from "react";

export default function SettingsForm(props) {

const [ favColor, setFavColor ] = useState("blue");
return <input value={favColor} onChange={...} />

}



USING HOOKS

Using Hooks: let's add context...

import React, { useState, useContext } from "react";

export default function SettingsForm(props) {

const login = useContext(LoginContext);

const [ favColor, setFavColor ] = useState("blue");
return <input value={favColor} onChange={...} />

}



USING HOOKS

Using Hooks: and now... boom!

import React, { useState, useContext } from "react";

export default function SettingsForm(props) {

const login = useContext(LoginContext);

if (!login.loggedIn) {
return <Redirect to="/login" />

}

const [ favColor, setFavColor ] = useState("blue");
return <input value={favColor} onChange={...} />

}

Why? Because it's a ... Hook ("weird magical meta-language")
Hooks must always be called in the same order

😱
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...and another one: useHistory from React Router

import { useHistory } from "react-router-dom";

export default function SettingsForm(props) {

function saveAndRedirect() {
saveSettings().then( 
() => useHistory().push("/home")

);
}

return <•••><button onClick={saveAndRedirect}>Save</button><•••>
}

😱

"weird magical meta-language"



USING HOOKS

...this works

import { useHistory } from "react-router-dom";

export default function SettingsForm(props) {
const history = useHistory();
function saveAndRedirect() {

saveSettings().then( 
() => history.push("/home")

);
}

return <•••><button onClick={saveAndRedirect}>Save</button><•••>
}

Might not be big difference, but...

☺
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USING HOOKS

Might not be a big difference, but...
• you have to know where you can use Hooks
• forces you to structure your code in exactly this way
• it's not "standard javascript"
• we even have/need a linter for Rules of Hooks 

Do you remember why React doesn't add a template language?
• To enable us to use our "favorite" language: JavaScript

• no need to learn a new language...

Does that mean Hooks (or React) are evil?
• No, but... they have their "price" (as classes have)
• It's "rethinking" again
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OF USING HOOKS



CONSEQUENCES

Can Custom Hooks replace existing patterns?

• Custom Hooks are another way for reusable logic
• Replacement for HOCs?
• Replacement for Render Properties?

• But... 
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Example: "old" React Router (with render prop)

// App.js
<Route path="/settings/:id" 

render={({match}) => <SettingsForm settingsId={match.params.id} />



CONSEQUENCES

Example: "old" React Router (with render prop)

// App.js
<Route path="/settings/:id" 

render={({match}) => <SettingsForm settingsId={match.params.id} />

// SettingsForm.js
export default function SettingsForm( {settingsId} ) {

// do something with settingsId
return •••;

}

Noteable:
• SettingsForm does not know anything about Router
• Routing "Logic" (Params, Routes, ...) are at one place (good imho)
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Example: React Router with new Route API and useParams

// App.js
<Route path="/settings/:id"><SettingsForm /></Route> 

new Router 
5.2 API
no render prop anymore!



CONSEQUENCES

Example: React Router with new Route API and useParams

// App.js
<Route path="/settings/:id"><SettingsForm /></Route> 

// SettingsForm.js
import { useParams } from "react-router-dom";

export default function SettingsForm( ) {
const { settingsId } = useParams();

// do something with settingsId
return •••;

}

Noteable:
• SettingsForm knows about Router API and Routing "Logic" (which Params)
• What about "Colocation"?

new Router 
5.2 API
no render-Prop anymore

(credits: h"ps://twi"er.com/andrewgreenh/status/1177213442710745091?s=20)
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What about this one?             (from: https://twitter.com/Wolverineks/status/1177818104048472065)

function RouterContext({ children }) {
return children({

history: useHistory(),
params: useParams(),
...

});
}



CONSEQUENCES

What about this one?             (from: https://twitter.com/Wolverineks/status/1177818104048472065)

function RouterContext({ children }) {
return children({

history: useHistory(),
params: useParams(),
...

});
}

<Route path="/settings/:id">
<RouterContext>

{({ params }) => <SettingsForm settingsId={params.id} />
</RouterContext>

</Router>

Noteable: welcome back, render properties!
But at least SettingsForm is Router-free



CONSEQUENCES

Example: Redux useDispatch and useSelector instead of connect

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = (r,g,b) => dispatch(actions.setNewColor(r,g,b));

return <•••><ColorPicker onSet={setNewColor}/><•••>
}
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CONSEQUENCES

Example: Redux useDispatch and useSelector instead of connect

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = (r,g,b) => dispatch(actions.setNewColor(r,g,b));

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

• Consequences:
• We now have only one component, have seen that already
• the component is bound to Redux, have seen that already
• But: it also has different rendering behaviour (compared to connect)

might "force" re-rendering  of the ColorPicker component
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We can fix this:

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = React.useCallback(
(r,g,b) => dispatch(actions.setNewColor(r,g,b)),
[ dispatch ]

);

return <•••><ColorPicker onSet={setNewColor}/><•••>
}



CONSEQUENCES

We can fix this:

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = React.useCallback(
(r,g,b) => dispatch(actions.setNewColor(r,g,b)),
[ dispatch ]

);

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

• "Nice!" (Fortunately we only have one callback function here...)

remember the dependency array? 👋



CONSEQUENCES

Is this really a problem?
• This problem is not related to Redux only

• In most cases not as performance might be good enough to re-render all the
time, so useCallback (and useMemo) is not a must

• But this is – esp. for beginners – not easy to understand (call me a beginner)

• BTW: I wonder how many CPU engery is wasted due to billions of unneccessary
function executions in React Apps world wide🤓
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ONE YEAR REACT HOOKS

Summary
• If you're already using React, use Hooks. 

• They will stay. It's the "New React". Classes will lose their relevance.
• For (experienced) React developers they are a good innovation
• We will see how Hooks-based architectures evolve

• However:
• While technically standard JavaScript functions, their usage is not 
• They are more like an own "magical meta-language" for React
• Selling point "you only have to know JavaScript to learn React" is not valid anymore

(if it has ever been)

• For people not familiar with React/new to React
• Hooks might scare people
• As React becomes a little less "JS Standard", People might consider

alternatives, like Web Components (Standard!) 
• We're still far away from "React Best Practices"



🌻

NILS@NILSHARTMANN.NET

Thanks a lot!

NILS HARTMANN
https://nilshartmann.net

Slides: h*ps://nils.buzz/react-meetup-hooks

What do you think?


