
React Hooks

REACT MEETUP HAMBURG | OCTOBER 2019 | @NILSHARTMANN

Slides: h*ps://nils.buzz/react-meetup-hooks

One Year

A (Critical) Review

NILS HARTMANN
https://nilshartmann.net

HTTPS://NILSHARTMANN.NET

NILS HARTMANN
nils@nilshartmann.net

Developer, Architect, Trainer from Hamburg (Freelancer)

JavaScript, TypeScript
React

GraphQL
Java

Trainings, Workshops and
Coachings 2nd edition out in dec!

REACT HOOKS

Anyone NOT knowing what React Hooks are?

REACT HOOKS

Anyone NOT knowing what React Hooks are?
(My assumption: almost noone)

REACT HOOKS

Anyone NOT knowing what React Hooks are?

Hooks 2 Minute intro
• add State, Lifecycle, Sideffects in functional components

(almost no need for class components anylonger)

REACT HOOKS

Anyone NOT knowing what React Hooks are?

Hooks 2 Minute intro
• add State, Lifecycle, Sideffects in functional components

(almost no need for class components anylonger)

• "Hooks into your components lifecycle"

REACT HOOKS

Anyone NOT knowing what React Hooks are?

Hooks 2 Minute intro
• add State, Lifecycle, Sideffects in functional components

(almost no need for class components anylonger)

• "Hooks into your components lifecycle"

• Regular JavaScript functions...
• ...but must start with 'use'
• ...but must not be used in conditionals, for/loops, Class

components
• ...but behaviour is tied to React

REACT HOOKS

Hooks example

import React, { useState } from "react";

export default function SettingsForm(props) {

const [favColor, setFavColor] = useState("blue");

return <•••>
<input value={favColor}

onChange={e => setFavColor(e.target.value) } />
<•••>

}

• useState returns value and setter-function
• When state changes, component re-renders

• component function will run again

One Year

React Hooks

REACT HOOKS

One Year of Hooks...

There are some built-in Hooks, like

• useState

• useReducer handle state in a Redux-like way but only for one component

• useEffect for sideeffects (replaces lifecycle methods in classes)

• useContext to receive a Context object

• useCallback/useMemo/useRef: solve problems that arise due to using... Hooks

REACT HOOKS

One Year of Hooks...

Libraries ship with Hooks, like

• Redux (useSelector, useDispatch, useStore)

• Router (useHistory, useParams, useLocation)

• Apollo Client (useQuery, useMutation)

• React Intl (useIntl)

• React i18n (useTranslation)

REACT HOOKS

One Year of Hooks...

Libraries ship with Hooks, like

• Redux (useSelector, useDispatch, useStore)

• Router (useHistory, useParams, useLocation)

• Apollo Client (useQuery, useMutation)

• React Intl (useIntl)

• React i18n (useTranslation)

Community has them too,

• https://usehooks.com

• https://nikgraf.github.io/react-hooks/

• https://www.hooks.guide/

REACT HOOKS

One Year of Hooks...

...it seems, Hooks are the newway to go for React Apps
(Vue has them now, too btw)

React Hooks

Good or Evil?

But...

GOOD OR EVIL?

Who likes Hooks?

GOOD OR EVIL?

Who likes Hooks?
(My assumption: almost everyone)

GOOD OR EVIL?

Who likes Hooks?
(My assumption: almost everyone)

Who dislikes Hooks?

GOOD OR EVIL?

Who likes Hooks?
(My assumption: almost everyone)

Who dislikes Hooks?
(My assumption: almost noone)

GOOD OR EVIL?

Let's hear some more...

h"ps://twi"er.com/philippspiess/status/1056981916489015296

"With Hooks,

React loses its innocence

and becomes Angular"
Attendee of one of my workshops

😱

h"ps://twi"er.com/dan_abramov/status/1056808552180793344

"Unsure..."
Me😵

h"ps://twi"er.com/tomdale/status/1170095532066430977

SO... HOW ABOUT THIS?

https://twitter.com/tomdale/status/1170095532922064901

SO... HOW ABOUT THIS?

h"ps://twi"er.com/tomdale/status/1170095532922064901

SO... HOW ABOUT THIS?

A LOOK AT THE API

REACT HOOKS

A LOOK AT THE API

useContext to access React Context in your functional component

export default function SettingsForm(props) {
const contextValue = React.useContext(ThemeContext);

return <p>Your context color: {contextValue.color}</p>
}

A LOOK AT THE API

useContext to access React Context in your functional component

export default function SettingsForm(props) {
const contextValue = React.useContext(ThemeContext);

return <p>Your context color: {contextValue.color}</p>
}

• Noteable: This is probably easy to understand:
I want to use context "ThemeContext" here in my component

A LOOK AT THE API

useContext to access React Context in your functional component

export default function SettingsForm(props) {
const contextValue = React.useContext(ThemeContext);

return <p>Your context color: {contextValue.color}</p>
}

• Noteable: This is probably easy to understand:
I want to use context "ThemeContext" here in my component

• But: if context changes, SettingsForm will automatically be re-executed!
Why? Because it's a ... Hook ("weird magical meta-language")
"Something" happens in the background to make that work
There is no indicator that this will happen. Syntactically "only" JavaScript

A LOOK AT THE API

useState for local State in your functional component

export default function SettingsForm(props) {
const [favColor, setFavColor] = useState("red");

return <input value={favColor}
onChange={e => setFavColor(e.target.value) />

}

A LOOK AT THE API

useState for local State in your functional component

export default function SettingsForm(props) {
const [favColor, setFavColor] = React.seState("red");

return <input value={favColor}
onChange={e => setFavColor(e.target.value) />

}
• Noteable: Return Value

• what is this? Tuple! (btw: I think Tuples will make it to JavaScript)

• unsual (yet), but elegant, allows to name my variables as I want them to

A LOOK AT THE API

useState for local State in your functional component

export default function SettingsForm(props) {
const [favColor, setFavColor] = React.useState("red");

return <input value={favColor}
onChange={e => setFavColor(e.target.value) />

}
• Noteable: Return Value

• what is this? Tuple! (btw: I think Tuples will make it to JavaScript)

• unsual (yet), but elegant, allows to name my variables as I want them to

• Noteable: initial value, used only once even if this function is run on each render
Why? Because it's a ... Hook ("weird magical meta-language")

A LOOK AT THE API

useState for local State in your functional component

export default function SettingsForm(props) {
const [favColor, setFavColor] = React.useState("red");

return <input value={favColor}
onChange={e => setFavColor(e.target.value) />

}
• Noteable: Return Value

• what is this? Tuple! (btw: I think Tuples will make it to JavaScript)

• unsual (yet), but elegant, allows to name my variables as I want them to

• Noteable: initial value, used only once even if this method is run on each render
Why? Because it's a ... Hook ("weird magical meta-language")

• Noteable: setter-Function leads to re-render
Why? Because it's a ... Hook ("weird magical meta-language")

A LOOK AT THE API

A timer...

export default function App() {
const [running, setRunning] = useState(false);

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);

setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}

A LOOK AT THE API

useRef: for fixing problems introduced by Hooks
• We want to cancel the running timeout
• Somehow need to get access to the cleanup function or the id
export default function App() {

const [running, setRunning] = useState(false);

function cancel() { 🤔 }

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);

setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}

A LOOK AT THE API

useRef: Remember Class Components?

h"ps://twi"er.com/dan_abramov/status/1125223181701263360

JavaScript Standard

"weird magical meta-language"

A LOOK AT THE API

useRef: for fixing problems introduced by Hooks
• We want to cancel the running timeout
• Somehow need to get access to the cleanup function or the id
export default function App() {

const [running, setRunning] = useState(false);
const timerRef = useRef();
function cancel() { clearTimeout(timerRef.current); }

useEffect(() => {
const id = setTimeout(() => setRunning(false), 2000);
timerRef.current = id;
setRunning(true);
return () => clearTimeout(id);

}, []);

return <button onClick={cancel}>Running: {running.toString()}</button>;
}

USING HOOKS

HOW DOES IT LOOK TO USE HOOKS?

USING HOOKS

Using Hooks: this is simple...

import React, { useState } from "react";

export default function SettingsForm(props) {

const [favColor, setFavColor] = useState("blue");
return <input value={favColor} onChange={...} />

}

USING HOOKS

Using Hooks: let's add context...

import React, { useState, useContext } from "react";

export default function SettingsForm(props) {

const login = useContext(LoginContext);

const [favColor, setFavColor] = useState("blue");
return <input value={favColor} onChange={...} />

}

USING HOOKS

Using Hooks: and now... boom!

import React, { useState, useContext } from "react";

export default function SettingsForm(props) {

const login = useContext(LoginContext);

if (!login.loggedIn) {
return <Redirect to="/login" />

}

const [favColor, setFavColor] = useState("blue");
return <input value={favColor} onChange={...} />

}

Why? Because it's a ... Hook ("weird magical meta-language")
Hooks must always be called in the same order

😱

USING HOOKS

...and another one: useHistory from React Router

import { useHistory } from "react-router-dom";

export default function SettingsForm(props) {

function saveAndRedirect() {
saveSettings().then(
() => useHistory().push("/home")

);
}

return <•••><button onClick={saveAndRedirect}>Save</button><•••>
}

😱

"weird magical meta-language"

USING HOOKS

...this works

import { useHistory } from "react-router-dom";

export default function SettingsForm(props) {
const history = useHistory();
function saveAndRedirect() {

saveSettings().then(
() => history.push("/home")

);
}

return <•••><button onClick={saveAndRedirect}>Save</button><•••>
}

Might not be big difference, but...

☺

USING HOOKS

Might not be a big difference, but...
• you have to know where you can use Hooks
• forces you to structure your code in exactly this way
• it's not "standard javascript"
• we even have/need a linter for Rules of Hooks

USING HOOKS

Might not be a big difference, but...
• you have to know where you can use Hooks
• forces you to structure your code in exactly this way
• it's not "standard javascript"
• we even have/need a linter for Rules of Hooks

Do you remember why React doesn't add a template language?

USING HOOKS

Might not be a big difference, but...
• you have to know where you can use Hooks
• forces you to structure your code in exactly this way
• it's not "standard javascript"
• we even have/need a linter for Rules of Hooks

Do you remember why React doesn't add a template language?
• To enable us to use our "favorite" language: JavaScript

• no need to learn a new language...

USING HOOKS

Might not be a big difference, but...
• you have to know where you can use Hooks
• forces you to structure your code in exactly this way
• it's not "standard javascript"
• we even have/need a linter for Rules of Hooks

Do you remember why React doesn't add a template language?
• To enable us to use our "favorite" language: JavaScript

• no need to learn a new language...

Does that mean Hooks (or React) are evil?
• No, but... they have their "price" (as classes have)
• It's "rethinking" again

Consequences

OF USING HOOKS

CONSEQUENCES

Can Custom Hooks replace existing patterns?

• Custom Hooks are another way for reusable logic
• Replacement for HOCs?
• Replacement for Render Properties?

• But...

CONSEQUENCES

Example: "old" React Router (with render prop)

// App.js
<Route path="/settings/:id"

render={({match}) => <SettingsForm settingsId={match.params.id} />

CONSEQUENCES

Example: "old" React Router (with render prop)

// App.js
<Route path="/settings/:id"

render={({match}) => <SettingsForm settingsId={match.params.id} />

// SettingsForm.js
export default function SettingsForm({settingsId}) {

// do something with settingsId
return •••;

}

Noteable:
• SettingsForm does not know anything about Router
• Routing "Logic" (Params, Routes, ...) are at one place (good imho)

CONSEQUENCES

Example: React Router with new Route API and useParams

// App.js
<Route path="/settings/:id"><SettingsForm /></Route>

new Router
5.2 API
no render prop anymore!

CONSEQUENCES

Example: React Router with new Route API and useParams

// App.js
<Route path="/settings/:id"><SettingsForm /></Route>

// SettingsForm.js
import { useParams } from "react-router-dom";

export default function SettingsForm() {
const { settingsId } = useParams();

// do something with settingsId
return •••;

}

Noteable:
• SettingsForm knows about Router API and Routing "Logic" (which Params)
• What about "Colocation"?

new Router
5.2 API
no render-Prop anymore

(credits: h"ps://twi"er.com/andrewgreenh/status/1177213442710745091?s=20)

CONSEQUENCES

What about this one? (from: https://twitter.com/Wolverineks/status/1177818104048472065)

function RouterContext({ children }) {
return children({

history: useHistory(),
params: useParams(),
...

});
}

CONSEQUENCES

What about this one? (from: https://twitter.com/Wolverineks/status/1177818104048472065)

function RouterContext({ children }) {
return children({

history: useHistory(),
params: useParams(),
...

});
}

<Route path="/settings/:id">
<RouterContext>

{({ params }) => <SettingsForm settingsId={params.id} />
</RouterContext>

</Router>

Noteable: welcome back, render properties!
But at least SettingsForm is Router-free

CONSEQUENCES

Example: Redux useDispatch and useSelector instead of connect

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = (r,g,b) => dispatch(actions.setNewColor(r,g,b));

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

CONSEQUENCES

Example: Redux useDispatch and useSelector instead of connect

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = (r,g,b) => dispatch(actions.setNewColor(r,g,b));

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

• Consequences:
• We now have only one component, have seen that already
• the component is bound to Redux, have seen that already

CONSEQUENCES

Example: Redux useDispatch and useSelector instead of connect

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = (r,g,b) => dispatch(actions.setNewColor(r,g,b));

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

• Consequences:
• We now have only one component, have seen that already
• the component is bound to Redux, have seen that already
• But: it also has different rendering behaviour (compared to connect)

might "force" re-rendering of the ColorPicker component

CONSEQUENCES

We can fix this:

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = React.useCallback(
(r,g,b) => dispatch(actions.setNewColor(r,g,b)),
[dispatch]

);

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

CONSEQUENCES

We can fix this:

import { useDispatch, useSelector } from "react-redux";

export default function SettingsForm(props) {
const favColor = useSelector(state => state.theme.favColor);
const dispatch = useDispatch();

const setNewColor = React.useCallback(
(r,g,b) => dispatch(actions.setNewColor(r,g,b)),
[dispatch]

);

return <•••><ColorPicker onSet={setNewColor}/><•••>
}

• "Nice!" (Fortunately we only have one callback function here...)

remember the dependency array? 👋

CONSEQUENCES

Is this really a problem?
• This problem is not related to Redux only

• In most cases not as performance might be good enough to re-render all the
time, so useCallback (and useMemo) is not a must

• But this is – esp. for beginners – not easy to understand (call me a beginner)

• BTW: I wonder how many CPU engery is wasted due to billions of unneccessary
function executions in React Apps world wide🤓

One Year

React Hooks
Summary

ONE YEAR REACT HOOKS

Summary

ONE YEAR REACT HOOKS

Summary
• If you're already using React, use Hooks.

• They will stay. It's the "New React". Classes will lose their relevance.
• For (experienced) React developers they are a good innovation
• We will see how Hooks-based architectures evolve

ONE YEAR REACT HOOKS

Summary
• If you're already using React, use Hooks.

• They will stay. It's the "New React". Classes will lose their relevance.
• For (experienced) React developers they are a good innovation
• We will see how Hooks-based architectures evolve

• However:
• While technically standard JavaScript functions, their usage is not
• They are more like an own "magical meta-language" for React
• Selling point "you only have to know JavaScript to learn React" is not valid anymore

(if it has ever been)

ONE YEAR REACT HOOKS

Summary
• If you're already using React, use Hooks.

• They will stay. It's the "New React". Classes will lose their relevance.
• For (experienced) React developers they are a good innovation
• We will see how Hooks-based architectures evolve

• However:
• While technically standard JavaScript functions, their usage is not
• They are more like an own "magical meta-language" for React
• Selling point "you only have to know JavaScript to learn React" is not valid anymore

(if it has ever been)

• For people not familiar with React/new to React
• Hooks might scare people
• As React becomes a little less "JS Standard", People might consider

alternatives, like Web Components (Standard!)
• We're still far away from "React Best Practices"

🌻

NILS@NILSHARTMANN.NET

Thanks a lot!

NILS HARTMANN
https://nilshartmann.net

Slides: h*ps://nils.buzz/react-meetup-hooks

What do you think?

